YII 数学 SAT 演習

●4-7 Algebraic Inequalities

- 1. What is the largest integer value of p that satisfies the inequality 4 + 3p ?
 - (A) -2
 - (B) -1
 - (C) 0
 - (D) 1
 - (E) 2
- 2. If -3 < 2x + 5 < 9, which of the following CANNOT be a possible value of x?
 - (A) -2
 - (B) -1
 - (C) 0
 - (D) 1
 - (E) 2
- 3. If the sum of a number and the original number increased by 5 is greater than 11, which could be a possible value of the number?
 - (A) -5
 - (B) -1
 - (C) 1
 - (D) 3
 - (E) 4
- 4. If $0 < a^2 < b$, which of the following statements is (are) always true?
 - I. $a < \frac{b}{a}$
 - II. $a^4 < a^2b$
 - III. $\frac{a^2}{b} < 1$
 - (A) I only
 - (B) I and II
 - (C) II and III
 - (D) I and III
 - (E) I, II, and III

- 5. What is the smallest integer value of x that satisfies the inequality 4 3x < 11?
 - (A) -3
 - (B) -2
 - (C) -1
 - (D) 0
 - (E) 1
- 6. If a > b > c > 0, which of the following statements must be true?

$$I. \ \frac{a-c}{b-a} > \frac{b-c}{b-a}$$

- II. ab > ac
- III. $\frac{b}{a} > \frac{b}{c}$
- (A) I only
- (B) II only
- (C) III only
- (D) I and II
- (E) II and III
- 7. If $\frac{r}{3}$ < 15 and s = r + 4, which of the following must be true?
 - (A) r < 5
 - (B) r < 18
 - (C) s < 9
 - (D) s < 20
 - (E) s < 49
- 8. Which of the following statements must be true when $a^2 < b^2$ and a and b are not 0?
 - $I.\frac{a^2}{a} < \frac{b^2}{a}$
 - II. $\frac{1}{a^2} > \frac{1}{b^2}$
 - III. (a + b)(a b) < 0
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II
 - (E) II and III

- 9. For how many integer values of b is b+3>0 and 1>2b-9?
 - (A) Four
 - (B) Five
 - (C) Six
 - (D) Seven
 - (E) Eight
- 10. If xy > 1 and z < 0, which of the following statements must be true?
 - I. x > z
 - II. xyz < -1
 - III. $\frac{xy}{z} < \frac{1}{z}$
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) II and III
 - (E) None

Grid-In

- 1. For what integer value of y is y + 5 > 8 and 2y 3 < 7?
- 2. If 2 times an integer x is increased by 5, the result is always greater than 16 and less than 29. What is the least value of x?
- 3. If 2 < 20x 13 < 3, what is one possible value for x?
- 4. $\frac{1}{7} + \frac{1}{8} \frac{1}{9} + \frac{1}{10} < \frac{1}{8} \frac{1}{9} + \frac{1}{10} + \frac{1}{n}$

For the above inequality, what is the greatest possible positive integer value of *n*?

■4-7 Algebraic Inequalities 解答・解説

1. **(A)** *Solution 1*: Since 4 + 3p , then3p - p < 1 - 4 or 2p < -3so $p < -\frac{3}{2}$. Hence, the largest integer value for p is -2.

Solution 2: Plug each of the answer choices for p into 4 + 3p until you find onethat makes the inequality a true statement. Since choice (A) gives

4+3(-2)<(-2)+1there is no need to continue.

2. **(E)** Solution 1: Solve -3 < 2x + 5 < 9 by first subtracting 5 from each member. The result is -8 < 2x < 4. Now divide each member of this inequality by 2, obtaining -4< x < 2. Examine each of the answer choices until you find one (E) that is not between -4and 2. Since x is less than 2, 2 is not a possible value of x.

Solution 2: Plug each of the answer choices for x into -3 < 2x + 5 < 9 until you find one (E) that does not make the inequality a true statement.

- 3. (E) If the sum of a number, x, and the original number increased by 5, x + 5, is greater than 11, then x + (x + 5) > 11, so 2x + 5 > 11. Then 2x > 6, so x > 3. The only answer choice that is greater than 3 is (E).
- 4. (C) Determine whether each Roman numeral statement is always true when $0 < a^2 < b$.
 - · I. From the given inequality, you know that $a^2 < b$. Although a^2 is positive, a may or may not be positive. If a > 0, then $a < \frac{b}{a}$. If a < 0, then dividing each side of $a^2 < b$ by a reverses the inequality sign, so $a > \frac{b}{a}$. Hence, statement I is not always
 - II. Multiplying both sides of $a^2 < b$ by a^2 gives $a^4 < a^2b$, so statement II is always true.
 - III. Since b > 0, dividing both sides of $a^2 < b$ by b gives $\frac{a^2}{b} < 1$, so statement III is always true.

Only Roman numeral statements II and III are always true.

5. **(B)** *Solution 1*: If 4 - 3x < 11, then -3x <7, so $x > -\frac{7}{3}$. Since $-\frac{7}{3}$ is between -2 and -3, the smallest integer value of x that satisfies this inequality is -2.

Solution 2: Plug each of the answer choices for x, starting with (A), into 4 - 3x < 11 until you find one that makes the inequality a true statement. Choice (A) gives

> 4 - 3(-3) < 1113 < 11

which is not a true statement.

Choice (B) gives

4-3(-2)<1110 < 11

which is true, so there is no need to continue.

- 6. (B) Determine whether each Roman numeral statement is always true when a > b > c > 0.
 - I. Since a > b, then a c > b c, and b-a represents a negative number. Hence, when both sides of the inequality a - c >b-c are divided by b-a, a true inequality results only if the direction of the inequality is reversed. Thus,

$$\frac{a-c}{b-a} < \frac{b-c}{b-a}$$

so statement I is not always true.

- II. Since b > c and a > 0, multiplying both sides of the inequality b > c by a results in the true inequality ab > ac, so statement II is always true.
- III. Since a > c, then $\frac{1}{a} < \frac{1}{c}$. Since b > 0, multiplying both sides of the inequality $\frac{1}{a} < \frac{1}{c}$ by b produces the true inequality $\frac{b}{c} > \frac{b}{c}$, so statement III is not always true.

Hence, only Roman numeral statement II is always true.

7. (E) Since $\frac{r}{3} < 15$, $3(\frac{r}{3}) < 3(15)$, so r < 45. Since s = r + 4 and r < 45, s < 45 + 4 or s < 49.

- 8. (E) If $a^2 < b^2$ and a and b are not 0, then a and b may be either positive or negative numbers. Determine whether each Roman numeral statement must be true.
 - I. If a > 0, then $\frac{a^2}{a} < \frac{b^2}{a}$. Since dividing both sides of an inequality by a negative number reverses the inequality sign, if a < 0, then $\frac{a^2}{a} < \frac{b^2}{a}$. Hence, statement I is not always true.

• II. Since $a^2 < b^2$, their reciprocals have the opposite size relationship, so $\frac{1}{a^2} > \frac{1}{b^2}$. Statement II is always true.

• III. Since $a^2 < b^2$, then $a^2 - b^2 < 0$. Factoring the left side of this inequality gives (a + b)(a - b) < 0, so statement III is always true.

Only Roman numeral statements II and III must be true.

- 9. (D) If b+3>0, then b>-3. Since 1>2b-9, then 10>2b, so 5>b or b<5. Since b is an integer, b may be equal to any of these seven integers: -2, -1, 0, 1, 2, 3, or 4.
- 10. (C) Determine whether each Roman numeral statement is always true when xy > 1 and z < 0.
 - I. If x > 0, then x > z. However, the fact that x may be a negative number could mean that x < z, so statement I is not always true.
 - II. Multiplying an inequality by a negative quantity (z < 0) reverses the direction of the inequality, so (xy)z < (1)z, or xyz < z. Since z may or may not be greater than or equal to -1, the inequality xyz < -1 may or may not be true. Hence, statement II is not always true.
 - III. Dividing xy > 1 by a negative quantity reverses the direction of the inequality, so $\frac{xy}{z} < \frac{1}{z}$. Statement III is always true.

Only Roman numeral statement III is always true.

GRID-IN

1. (4) If 2y - 3 < 7, then 2y < 10, so y < 5. Since

$$y + 5 > 8$$
 and $2y - 3 < 7$
then $y > 3$ and at the same time $y < 5$. The integer for which the question asks must be 4.

2. (6) When 2 times an integer x is increased by 5, the result is always greater than 16 and less than 29, so 16 < 2x + 5 < 29. Subtracting 5 from each member of this inequality gives 11 < 2x < 24. Then

$$\frac{11}{2} < \frac{2x}{2} < \frac{24}{2}$$

so $5\frac{1}{2} < x < 12$. According to this inequality, x is greater than $5\frac{1}{2}$, so the least integer value of x is 6.

- 3. (.76) If 2 < 20x 13 < 3, adding 13 to each member of the combined inequality makes 15 < 20x < 16 or $\frac{15}{20} < x < \frac{16}{20}$, which can also be written as 0.75 < x < 0.80. Hence, one possible value for x is 0.76. Grid in as .76.
- 4. **(6)** Canceling identical terms on either side of the given inequality, $\frac{1}{7} + \frac{1}{8} \frac{1}{9} + \frac{1}{10} < \frac{1}{8} \frac{1}{9} + \frac{1}{10} + \frac{1}{n}$, results in $\frac{1}{7} < \frac{1}{n}$ or, equivalently, n < 7. Hence, the greatest possible integer value for n is 6.